constraint n. 1.强迫,拘束。 2.约束,压抑,拘泥。 3.强制力。 4.紧张感[状态]。 by constraint 勉强,强迫。 feel constraint觉得局促不安,感受压迫。 show constraint显得局促。 under [in] constraint 被迫,不得不;被束缚着。
displacement n. 1.转位,移动;取代,置换;(人的)流离失所。 2.撤换,免职。 3.【机械工程】(活塞)排气量;【航海】排水量〔一般指军舰的排水量;商船的排水量一般用 gross [net] ton(nage)〕。 4.【化学】置换(作用),取代(作用);【物理学】位移;【医学】移位;【生物学】替位;【药学】滤过;【地质学;地理学】(断层)移动。 displacement nitration process 【化学】取代硝化。
Topology optimization design of continuum structures under stress and displacement constraints 应力和位移约束下连续体结构拓扑优化
Topological optimization of continuum structure with stress and displacement constraints under multiple loading cases 多工况应力和位移约束下连续体结构拓扑优化
Then using the method of unit virtual - load , the displacement constraints are transformed into a explicit function to the design variables 然后利用单位虚载荷法将位移约束转化为设计变量与约束的显式关系。
Third , for the problem of the stress , local stability and displacement constraints , the sequential quadratic programming ( sqp ) method is adopted in this paper 第三,对于应力约束、局部稳定约束和位移约束的问题,本文采用序列二次规划sqp方法进行了求解。
The sectional optimization theory of membrane structure under size , stress and displacement constraints is developed . a special optimization module is developed by using pcl language of msc . patran 发展了膜结构在尺寸、应力和位移约束下的截面优化理论,并利用msc . patran提供的pcl语言,开发了专用的优化模块。
The structural dynamic optimum design is an advanced subject in the field of engineering structure design at present . the structural optimization problem under dynamic stress and displacement constraints is attached importance 结构动力优化设计是当前工程结构设计研究领域的前沿性课题,其中的结构动力响应优化(以动位移、动应力为目标函数或约束)近年来受到广泛重视。
The bar sectional sizes are optimized to make the weight of the structure minimized under constraints of stress , displacement and local stability . at the second step , supposing the active displacement constraints of the first step keeping unchanged . a quadratic programming model that increases the structural rigidity is solved 求解时分为两层,第一层在给定节点位置下对杆件截面进行优化,同时考虑了应力、局部稳定约束和位移约束的重量最轻;第二层假定截面层的有效位移约束作用不变,求解一个使桁架刚度增强的二次规划问题,获得既不违反约束,又使目标函数不上升的新的节点位置,再返回第一层。
2 . for the problem with size , stress and displacement constraints , the stress constraint is transformed into movable lower bounds of sizes , the displacement constraint is transformed into an approximate function which explicitly includes design variables by using mohr integral theory . a mathematical programming model of the optimization problem is set up . the dual programming of the model is approached into a quadratic programming model 2 .对于尺寸、应力和位移约束的问题,将应力约束化为动态下限,用单位虚荷载方法将位移约束近似显式化,构造优化问题的数学规划模型,将其对偶规划处理为二次规划问题,采用lemke算法进行求解,得到满足尺寸、应力和位移约束条件的截面最优解。