The n roots of this equation are called the eigenvalues . 这个方程A的n根叫做特征值。
An iteration procedure can be used to determine the eigenvalue . 迭代方法可用来确定特征值。
We can not say for certain which eigenvalue will be obtained . 我们不能说一定得到哪个本征值。
Notice that the energy eigenvalues are not equally spaced . 注意,这些本征值并不是等距离分布的。
To this end we shall first consider the following eigenvalue problem . 为此目的,我们将首先考虑下列的本征值问题。
We now do some juggling with (6. 69) to prove that the eigenvalues of b are the same as those of a . 为了证明B与A有相同的特征值,现在对(669)作点变化。
The procedure described above applies to the eigenvalues and eigenfunctions of any hermitian operator . 用上述运算方法也能求出任一厄密算符的本征值和本征函数。
The solution of the set of second-order linear differential equations (6.10) depends on the eigenvalues of a . 二阶线性微分方程组(610)的解依赖于A的特征值。
In fact, we could make the substitution and still wind up with the correct eigenfunctions and eigenvalues . 事实上,我们可以做这种代换而仍能绕弯得出正确的本征函数和本征值。
The process of finding the eigenvalues of operators without using their explicit forms has an elegance that will reward the persistent student . 不用算符的显形式来求算符的本征值的步骤是坚持不懈的学生值得做的一件美事。