A method for the determination of bivariate rational interpolants 预给极点的向量有理插值及性质
Bivariate neville-type vector-valued rational interpolants over rectangular grids 型向量有理插值
The extension of bivariate thiele type vector valued rational interpolants 一种求二元有理插值函数的方法
Stieltjes-newton's rational interpolants 型有理插值
Method for the determination of bivariate vector-valued rational interpolants 一种求二元向量有理插值函数的方法
Algorithms and properties of vector valued rational interpolants with prescribed poles 三角网格上的矩阵值有理插值
A survey of parametric scattered data fitting using triangular interpolants . curve and surface design, h . hagen ed ., springer-verlag, 1992 2在每条边界曲线上指定相应的二次法向量,其与边界曲线的切向量相垂直。
Moving least squares interpolants do not pass through the data because the interpolation functions are not equal to unity at the nodes unless the weight functions are singular 但是,移动最小二乘法的近似函数不一定精确地通过计算点,除非使用奇异的权函数。
Moving least square interpolants do not pass through the nodes because the interpolation functions are not equal to unity at the nodes unless the weight functions are singular 在用移动最小二乘法构造形函数时,只需在求解的区域内布置一系列的节点,而不需要划分网格。
In section two, the algorithms of vector-valued rational interpolants are stated generally . then a new algorithm of brivate vector-valued rational interpolants by means of complexification of the knots and backward three-term recurrence relations is given 然后利用插值型值点复数化的方法及向量值连分式的向后三项递推关系式讨论并给出了二元向量值有理插值的一种新算法。