The main work of this dissertation focuses on the analysis and design theory for a resonator with diffraction optical elements by using a matrix eigenvalue method . the principle and method how to realize a low diffraction beam have been described . both the experimental and theoretical results show that the low diffraction beam has great advantages over the gaussian beam in an ablation - dominated material removal processes 本文的重点是:阐述了利用矩阵本征值方法分析和设计激光谐振腔的系统理论;简述了产生和实现低衍射光束的原理和方法,实验发现了低衍射光束比高斯光束所具有的独特性能;理论设计和研制了衍射光学元件,并通过实验获得空心激光光束,提出了对不同空心光束的描述方法。
Secondly , the method for finding initial circular of symmetric matrices is presented on the based of the dichotomy . the method for finding initial circular of nonsymmetric matrices is obtained by utilizing the distribution theory of matrices eigenvalue , which satisfies the initial condition of circular iteration 其次,根据二分法的思想,提出了一种确定对称矩阵满足圆盘迭代初始条件的初始圆盘的方法;利用矩阵特征值分布理论,提出了一种确定非对称矩阵满足圆盘迭代初始条件的初始圆盘的方法。
4 . the spreading sequences estimation algorithms based on linear feedback shift register ( lfsr ) , matrix eigenvalue decomposition ( evd ) , neural networks ( nn ) have been systematically studied in this paper . and the performance of these algorithms is analyzed by many simulations 4 、系统地研究了现有的扩频码序列估计算法,介绍了它们的理论基础,重点推导和证明了基于线性反馈移位寄存器( lfsr ) 、特征值分解( evd ) 、神经网络( nn )的pn码序列估计算法,并对这些算法进行了仿真验证,分析了它们的优缺点。
In this paper , the parallel algorithm for finding ; matrices eigenvalue and its internal mechanism are thoroughly researched by situation of research at home and abroad . the matrices eigenvalue problem come down to the problem for solving roots of a polynomial , thereafter it is solved by circular arithmetic 本文在国内外关于求矩阵特征值问题的并行算法研究状况的基础上,对它们进行了进一步研究,探讨了它们的内部机理,将矩阵特征值问题归结为多项式求根问题,然后用圆盘算术求解。
On the basis of complet ' : ly analyses about dual - m ( ) de phase shiftcrs , the finite - element formulation derives the variational principle for non - se1fadjoint electromagnetic problems which is microwave propagaticn in a aniso1ropic media loaded waveguide . then , the variatonal problem is approximated by a matrix eigenvalue problem 在此基础上,详细讨论了利用有限元分析法这一强有力的工具来分析波导中填充各向异性介质的问题,导出了基于变分原理的泛函和有限元方程。