(2 ) the influence to classification result is highly effected by using different classifier, for example, the center-vector algorithm obtains better classification results than other two algorithms . with the character feature, the average recall is 80.73 %, and the average precision is 82.94 %, and with the chinese-word feature, the average recall is 83.6 %, and the average precision is 85.97 % . different corpuses influence the classification result . for example, the average recall is 89.31 % and the average precision is 88.33 %, by using the news web pages as corpus from the web site " www . sina . com . cn ", which adopt the center-vector algorithm to structure classifier and select chinese-word as feature 对三种分类器分别以字、词为特征进行分类测试、分析发现:使用相同的分类算法,用词作为特征项,比以字作为特征的分类效果好;用不同的算法构造分类器对分类效果的影响很大,如中心向量算法在字、词特征下的分类效果优于其他两算法;在以字为特征的情况下,该算法的平均查全率80.73,平均查准率82.94;在以词为特征的情况下,该算法的平均查全率83.6,平均查准率85.97;选用语料不同对分类效果也有影响,如用新浪网(www.sina.com.cn)网页语料进行测试,使用中心向量法分类器和词作为特征的情况下,平均准确率为89.31,平均查全率为88.33。
(2 ) the influence to classification result is highly effected by using different classifier, for example, the center-vector algorithm obtains better classification results than other two algorithms . with the character feature, the average recall is 80.73 %, and the average precision is 82.94 %, and with the chinese-word feature, the average recall is 83.6 %, and the average precision is 85.97 % . different corpuses influence the classification result . for example, the average recall is 89.31 % and the average precision is 88.33 %, by using the news web pages as corpus from the web site " www . sina . com . cn ", which adopt the center-vector algorithm to structure classifier and select chinese-word as feature 对三种分类器分别以字、词为特征进行分类测试、分析发现:使用相同的分类算法,用词作为特征项,比以字作为特征的分类效果好;用不同的算法构造分类器对分类效果的影响很大,如中心向量算法在字、词特征下的分类效果优于其他两算法;在以字为特征的情况下,该算法的平均查全率80.73,平均查准率82.94;在以词为特征的情况下,该算法的平均查全率83.6,平均查准率85.97;选用语料不同对分类效果也有影响,如用新浪网(www.sina.com.cn)网页语料进行测试,使用中心向量法分类器和词作为特征的情况下,平均准确率为89.31,平均查全率为88.33。
based on these descriptions, a nd model called support vector data description ( svdd ) is founded . ( 2 ) a qualitative guide for setting those parameters in oc-svms is investigated . a multi-layer high-speed training strategy was proposed to enable support vector algorithm to handle large training data (2)通过分析支持向量机中模型参数对检测结果的影响,给出了确定这些参数的一般方法;提出了一种分层式的快速训练方法,克服了样本个数和维数对支持向量算法应用的制约,提高了训练效率。
first, the theories of the music algorithm and the esprit are presented here . conventional algorithms are limited by the array configuration, and a constructing vectors algorithm, which uses the correlative function of array data, is proposed in this paper . this algorithm is n't restricted within the special array configuration, and it is also very steady 在介绍了多重信号分类(music)算法和旋转不变技术(esprit)的基本原理后,考虑到常规的算法都受到阵列形式的限制,本文在esprit算法的基础上,提出了一种利用阵元数据的相关函数构造向量的算法,该算法不要求特定阵列结构,且有一定的稳健性。
in this paper, we begin with the analysis of wavelet transform . after the analysis of image wavelet coefficients and methods of image compression, a method of vector-constitution among different subbands, making verctor book using pcc + lbg, and fast vq is presented . at the same time a better compression performance is improved by using multistage vector algorithm, the design of this algorithm based on dsps is given at the end of this paper 该算法充分利用了小波分解后各子带间的相关性,跨子带构造高维数矢量,利用改进的渐进构造聚类(pcc)结合lbg的算法生成了具有代表性的最优码书,并提取特征矢量快速实现矢量量化,最后通过二级量化进一步降低矢量量化的复杂度。