In 1728 euler gave differential equations for geodesics on surfaces . 1728年,奥伊勒绘出了曲面上测地线的微方程。
We shall deduce the result from a lemma about euler trails in directed multigraphs . 我们用一个关于有向重图中尤拉迹的引理来证明这个定理。
Euler then shows how he can get the differential equation whose solutions are called cylinderical waves . 然后,尤拉展示他怎样得到其解称为圆柱波的微分方程。
Neither euler nor lagrange envisioned the rich possibilities which their work on complex integers opened up . 无论Euler或Lagrange都没有预想到他们关于复整数的工作所打开的丰富可能性。
This leads us to another contribution of leonhard euler to graph theory, namely euler's polyhedron theorem or simply euler's formula . 这是我们引向L尤拉对图论的另一个贡献,即尤拉多面体定理,或简称尤拉公式。