the paper will utilize the properties and the latest work for hypercyclic operators and semigroups, and particularly for the theory of nonwandering operators, hypercyclic semigroups, and chaoticand semigroups . combining their definitions, we will form their connections 本文利用超循环算子和半群的性质和最新的研究进展,着眼于非游荡算子理论与超循环算子(及半群)、混沌算子(及半群)或者更一般的半群,结合各自定义建立之间联系。
the paper will utilize the properties and the latest work for hypercyclic operators and semigroups, and particularly for the theory of nonwandering operators, hypercyclic semigroups, and chaoticand semigroups . combining their definitions, we will form their connections 本文利用超循环算子和半群的性质和最新的研究进展,着眼于非游荡算子理论与超循环算子(及半群)、混沌算子(及半群)或者更一般的半群,结合各自定义建立之间联系。
in addition, in a certain infinite dimensional space, the paper will provide an example of nonwandering semigroup and a sufficient condition for nonwandering semigroup . according to recent results and methods, we may get the hypercyclic decomposition of nonwandering semigroup . and, we will discuss the hypercyclic decomposition from the multi-hypercyclic operator provided not long ago 本文还将在特定的无穷维空间找出具体的非游荡算子半群例子,将给出非游荡算子半群的一个充分条件,且依照已有的结果和方法获得非游荡算子半群的超循环算子半群分解。
in addition, in a certain infinite dimensional space, the paper will provide an example of nonwandering semigroup and a sufficient condition for nonwandering semigroup . according to recent results and methods, we may get the hypercyclic decomposition of nonwandering semigroup . and, we will discuss the hypercyclic decomposition from the multi-hypercyclic operator provided not long ago 本文还将在特定的无穷维空间找出具体的非游荡算子半群例子,将给出非游荡算子半群的一个充分条件,且依照已有的结果和方法获得非游荡算子半群的超循环算子半群分解。
in addition, in a certain infinite dimensional space, the paper will provide an example of nonwandering semigroup and a sufficient condition for nonwandering semigroup . according to recent results and methods, we may get the hypercyclic decomposition of nonwandering semigroup . and, we will discuss the hypercyclic decomposition from the multi-hypercyclic operator provided not long ago 本文还将在特定的无穷维空间找出具体的非游荡算子半群例子,将给出非游荡算子半群的一个充分条件,且依照已有的结果和方法获得非游荡算子半群的超循环算子半群分解。