Note on self - adjoint quaternion matrices 关于自共轭四元数矩阵的注记
Functional inequalities for fractional powers of positive definite self - adjoint operators 正定自伴算子分数幂的泛函不等式
Multiplicative self - adjoint maps on a non - standard operator algebra which preserve spectrum 一个非标准算子代数上的保谱乘法自伴映射
Study of non - self - adjoint variational problem in low - frequency eddy current electromagnetic field 低频涡流电磁场非自伴变分问题的研究
For the non - self - adjoint dirac operators , there are plentiful content in the problems of eigenval ue expansion problems 从所得结果来看,对于非自伴dirac算子来说,特征展开问题具有相当丰富的内容。
For the expansion theorems of self - adjoint dirac operator , it is difficult to prove it by using the method of integral equation 对于自伴dirac算子的特征展开定理的证明,用积分方程方法有一定的困难。
About dirac eigenvalue problem with general two points " liner algebra , corresponding operator of which often is non - self - adjoint operator 对于一般两点线性(代数)边界条件下的dirac特征值问题,相应的算子一般说是非自伴的。
By resorting to the residue method , the asymptotic formulas for the eigenvalues and the expansion theorems of dirac eigenvalue problems are proved under the self - adjoint and non - self - adjoint boundary conditions 本文用留数方法证明了自伴和非自伴的dirac算子的特征值估计和特征展开定理。
The condition under which the dirac operator is self - adjoint is discussed under the general linear boundary condition between the interval of two points . for the expansion theorem of non - self - adjoint dirac operator , it is unable to use the method of integral equation . but under the linear boundary condition and unlocal boundary condition , the eigenvalue expansion problems of non - self - adjoint operator can still be discussed by using the residue method 对于非自伴dirac算子的特征展开定理已无法应用积分方程的方法,本文仍用留数方法对一个两点非自伴边界条件和一个非局部边界条件下产生的非自伴算子的特征展开问题进行了讨论,分别得到了它们的特征展开定理。